Can treadmill walking be used to assess propulsion generation?

نویسندگان

  • Evan J Goldberg
  • Steven A Kautz
  • Richard R Neptune
چکیده

Instrumented treadmills offer significant advantages for analysis of human locomotion, including recording consecutive steady-state gait cycles, precisely controlling walking speed, and avoiding force plate targeting. However, some studies of hemiparetic walking on a treadmill have suggested that the moving treadmill belt may fundamentally alter propulsion mechanics. Any differences in propulsion mechanics during treadmill walking would be problematic since recent studies assessing propulsion have provided fundamental insight into hemiparetic walking. The purpose of this study was to test the hypothesis that there would be no difference in the generation of anterior/posterior (A/P) propulsion by performing a carefully controlled comparison of the A/P ground reaction forces (GRFs) and impulses in healthy adults during treadmill and overground walking. Gait data were collected from eight subjects walking overground and on a treadmill with speed and cadence controlled. Peak negative and positive horizontal GRFs in early and late stance, respectively, were reduced by less than 5% of body weight (p<0.05) during treadmill walking compared to overground walking. The magnitude of the braking impulse was similarly lower (p<0.05) during treadmill walking, but no significant difference was found between propulsion impulses. While there were some subtle differences in A/P GRFs between overground and treadmill walking, these results suggest there is no fundamental difference in propulsion mechanics. We conclude that treadmill walking can be used to investigate propulsion generation in healthy and by implication clinical populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differences in self-selected and fastest-comfortable walking in post-stroke hemiparetic persons.

Post-stroke hemiparetic walking is typically asymmetric. Assessment of symmetry is often performed at either self-selected or fastest-comfortable walking speeds to gain insight into coordination deficits and compensatory mechanisms. However, how walking speed influences the level of asymmetry is unclear. This study analyzed relative changes in paretic and non-paretic leg symmetry to assess whet...

متن کامل

Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking.

Forward propulsion is a central task of walking that depends on the generation of appropriate anterior-posterior ground reaction forces (AP GRFs). The AP impulse (i.e., time integral of the AP GRF) generated by the paretic leg relative to the non-paretic leg is a quantitative measure of the paretic leg's contribution to forward propulsion and is variable across hemiparetic subjects. The purpose...

متن کامل

Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis.

BACKGROUND A common measure of rehabilitation effectiveness post-stroke is self-selected walking speed, yet individuals may achieve the same speed using different coordination strategies. Asymmetry in the propulsion generated by each leg can provide insight into paretic leg coordination due to its relatively strong correlation with hemiparetic severity. Subjects walking at the same speed can ex...

متن کامل

Kinetic patterns of treadmill walking in preadolescents with and without Down syndrome.

This study investigated the effect of both walking speed and external ankle load on the kinetic patterns of treadmill walking in preadolescents with and without Down syndrome (DS). Ten preadolescents with DS and ten age- and gender-matched children with typical development (TD) participated in this study. We manipulated two treadmill speeds and two external ankle loads. Treadmill speeds were eq...

متن کامل

A soft robotic exosuit improves walking in patients after stroke.

Stroke-induced hemiparetic gait is characteristically slow and metabolically expensive. Passive assistive devices such as ankle-foot orthoses are often prescribed to increase function and independence after stroke; however, walking remains highly impaired despite-and perhaps because of-their use. We sought to determine whether a soft wearable robot (exosuit) designed to supplement the paretic l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 41 8  شماره 

صفحات  -

تاریخ انتشار 2008